2709 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.037$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-[5-(3,4-Dichlorophenyl)-3-(2naphthyl)-4,5-dihydropyrazol-1-yl]ethanone

Zhi-Ke Lu,^a* Shen Li^a and Yan Feng^b

^aForestry College, GuangXi University, Nanning 530005, People's Republic of China, and ^bChemistry Department, Guangxi Industrial Vocational Technical College, Nanning 530001, People's Republic of China Correspondence e-mail: lukz1886@yahoo.com.cn

Received 10 August 2008; accepted 20 August 2008

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.003 Å; R factor = 0.034; wR factor = 0.091; data-to-parameter ratio = 13.4.

In the title compound, $C_{21}H_{16}Cl_2N_2O$, the central pyrazoline ring makes dihedral angles of 90.1 (3) and 7.8 (3) $^{\circ}$, with the pendant benzene ring and naphthalene ring system, respectively. In the crystal structure, weak $C-H\cdots O$ interactions lead to chains of molecules.

Related literature

For related literature, see: Lu et al. (2006).

Experimental

Crystal data

$C_{21}H_{16}Cl_2N_2O$	$\gamma = 104.12 \ (3)^{\circ}$
$M_r = 383.26$	V = 894.2 (3) Å ³
Triclinic, P1	Z = 2
a = 6.2154 (12) Å	Mo $K\alpha$ radiation
b = 9.3505 (19) Å	$\mu = 0.38 \text{ mm}^{-1}$
c = 16.319 (3) Å	T = 113 (2) K
$\alpha = 97.42 \ (3)^{\circ}$	$0.22 \times 0.20 \times 0.12 \text{ mm}$
$\beta = 99.07 \ (3)^{\circ}$	
Data collection	
Rigaku Saturn diffractometer	9131 measured reflections
Absorption correction: multi-scan	3155 independent reflections

Absorption correction: multi-scan (CrystalClear; Rigaku, 2004) $T_{\min} = 0.922, T_{\max} = 0.956$

Refinement

236 parameters
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ $C6-H6\cdots O1^i$ 0.93 2.58 3.501 (2) 171

Symmetry code: (i) x - 2, y - 1, z.

Data collection: CrystalClear (Rigaku, 2004); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank Dr Haibin Song of Nankai University for helpful discussions, and the Science Foundation of GuangXi University for financial support (DD180021).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2778).

References

Lu, Z.-K., Li, S. & Huang, P.-M. (2006). Acta Cryst. E62, 05830-05831. Rigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2008). E64, o1827 [doi:10.1107/S1600536808026858]

1-[5-(3,4-Dichlorophenyl)-3-(2-naphthyl)-4,5-dihydropyrazol-1-yl]ethanone

Z.-K. Lu, S. Li and Y. Feng

Comment

The title compound, (I), (Fig. 1) was prepared and structurally characterized as part of our ongoing studies (Lu *et al.*, 2006) of pyrazoline derivatives.

The pendant C14—C19 benzene ring and C1—C10 naphthalene ring make dihedral angles of 90.1 (3) and 7.8 (3)°, respectively, with the central N1/N2/C11/C12/C13 pyrazoline ring. The dihedral angle between the C14—C19 ring and the C1—C10 ring is 86.8 (3)°. The molecule of (I) is chiral: in the arbitrarily chosen asymmetric unit, C13 has *R* configuration, but crystal symmetry generates a racemic mixture. In the crystal of (I), molecules are linked by a weak C—H…O interaction (Table 1 and Fig. 2) into infinite chains.

Experimental

A mixture of 1-(naphthalen-2-yl)-3-(3,4-dichlorophenyl)prop-2-en-1-one (5.0 mmol), hydrazine hydrate (25.0 mmol) and acetic acid (30 ml) was heated at reflux for 5 h, then poured onto crushed ice. The precipitate was separated by filtration, washed with petroleum ether, and crystallized from ethyl acetate-petroleum ether to obtain the title compound.

The title compound (40 mg) was dissolved in a mixture of ethyl acetate (10 ml) and petroleum ether (30 ml) and the solution was kept at room temperature for 8 d. Natural evaporation of the solution gave colourless slabs of (I) suitable for X-Ray analysis. *M*.p. 515–516 K.

Refinement

All the H atoms were placed geometrically (C—H = 0.93–0.98 Å), and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. The molecular structure of (I), shown with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).

Fig. 2. Part of the crystal structure of (I) showing C—H…O interactions as dashed lines.

1-[5-(3,4-Dichlorophenyl)-3-(2-naphthyl)-4,5-dihydropyrazol-1-yl] ethan one

Crystal	data
---------	------

$C_{21}H_{16}Cl_2N_2O$	Z = 2
$M_r = 383.26$	$F_{000} = 396$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.423 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Melting point: 515-516 K K
a = 6.2154 (12) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
b = 9.3505 (19) Å	Cell parameters from 2978 reflections
c = 16.319(3) Å	$\theta = 2.3 - 27.5^{\circ}$
$\alpha = 97.42 \ (3)^{\circ}$	$\mu = 0.38 \text{ mm}^{-1}$
$\beta = 99.07 (3)^{\circ}$	T = 113 (2) K
$\gamma = 104.12 \ (3)^{\circ}$	Slab, colourless
V = 894.2 (3) Å ³	$0.22 \times 0.20 \times 0.12 \text{ mm}$

Data collection

Rigaku saturn diffractometer	3155 independent reflections
Radiation source: rotating anode	2709 reflections with $I > 2\sigma(I)$
Monochromator: confocal	$R_{\rm int} = 0.037$
T = 113(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (Crystalclear; Rigaku, 2004)	$h = -7 \rightarrow 7$
$T_{\min} = 0.922, \ T_{\max} = 0.956$	$k = -11 \rightarrow 10$
9131 measured reflections	$l = -18 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

 $R[F^{2} > 2\sigma(F^{2})] = 0.033$ H-atom parameters constrained $wR(F^{2}) = 0.090$ $WR(F^{2}) = 0.090$ $Where P = (F_{o}^{2} + 2F_{c}^{2})/3$ S = 1.05 $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.20 \text{ e}^{A^{-3}}$ $\Delta\rho_{min} = -0.27 \text{ e}^{A^{-3}}$ Primary atom site location: structure-invariant direct

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and i	sotropic	c or e	quivalent	isotror	vic dis	nlacement	narameters	$(Å^2$)
1 / 40000000	cutonne	coordinates		sonopie	01 00	100000000000000000000000000000000000000	1501101		pracement	parameters	(**)	/

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	1.32350 (7)	0.97267 (5)	1.10751 (3)	0.02660 (14)
Cl2	1.68608 (7)	0.78933 (5)	1.08859 (3)	0.02684 (14)
01	1.53261 (19)	0.68503 (13)	0.74819 (7)	0.0286 (3)
N1	0.9532 (2)	0.50512 (15)	0.67138 (8)	0.0198 (3)
N2	1.1666 (2)	0.55742 (15)	0.72303 (8)	0.0206 (3)
C1	0.4859 (3)	0.37150 (18)	0.59400 (10)	0.0215 (4)
H1	0.5670	0.4456	0.5692	0.026*
C2	0.2643 (3)	0.30298 (19)	0.55983 (11)	0.0239 (4)
H2	0.1959	0.3315	0.5120	0.029*
C3	0.1354 (3)	0.18853 (18)	0.59586 (10)	0.0215 (4)
C4	-0.0965 (3)	0.11843 (19)	0.56347 (11)	0.0266 (4)
H4	-0.1698	0.1478	0.5170	0.032*
C5	-0.2152 (3)	0.0078 (2)	0.59938 (12)	0.0298 (4)
Н5	-0.3681	-0.0362	0.5775	0.036*
C6	-0.1072 (3)	-0.03961 (19)	0.66921 (11)	0.0265 (4)
H6	-0.1882	-0.1154	0.6930	0.032*
C7	0.1177 (3)	0.02613 (19)	0.70205 (11)	0.0238 (4)
H7	0.1885	-0.0064	0.7478	0.029*
C8	0.2442 (3)	0.14301 (18)	0.66739 (10)	0.0195 (4)
С9	0.4748 (3)	0.21678 (18)	0.70202 (10)	0.0202 (4)
Н9	0.5469	0.1879	0.7490	0.024*
C10	0.5944 (3)	0.33057 (17)	0.66748 (10)	0.0194 (4)
C11	0.8300 (3)	0.40644 (18)	0.70550 (10)	0.0185 (4)
C12	0.9545 (3)	0.37641 (18)	0.78625 (10)	0.0210 (4)

supplementary materials

H12A	0.9740	0.2760	0.7790	0.025*
H12B	0.8751	0.3893	0.8321	0.025*
C13	1.1838 (3)	0.49564 (18)	0.80228 (10)	0.0205 (4)
H13	1.3077	0.4475	0.8076	0.025*
C14	1.2205 (3)	0.61660 (17)	0.87818 (10)	0.0188 (4)
C15	1.4098 (3)	0.64529 (18)	0.94150 (10)	0.0198 (4)
H15	1.5156	0.5910	0.9367	0.024*
C16	1.4433 (3)	0.75409 (18)	1.01202 (10)	0.0197 (4)
C17	1.2860 (3)	0.83565 (17)	1.01969 (10)	0.0204 (4)
C18	1.0972 (3)	0.80925 (19)	0.95591 (11)	0.0245 (4)
H18	0.9926	0.8645	0.9605	0.029*
C19	1.0647 (3)	0.70084 (19)	0.88558 (11)	0.0243 (4)
H19	0.9384	0.6838	0.8429	0.029*
C20	1.3468 (3)	0.64765 (18)	0.70068 (11)	0.0220 (4)
C21	1.3033 (3)	0.6979 (2)	0.61719 (11)	0.0283 (4)
H21A	1.2530	0.7871	0.6245	0.042*
H21B	1.1888	0.6204	0.5783	0.042*
H21C	1.4403	0.7182	0.5954	0.042*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0326 (3)	0.0253 (3)	0.0227 (2)	0.01150 (19)	0.00395 (18)	0.00158 (18)
Cl2	0.0236 (2)	0.0309 (3)	0.0231 (2)	0.00903 (19)	-0.00383 (17)	0.00134 (18)
01	0.0188 (6)	0.0310 (7)	0.0312 (7)	-0.0007 (5)	0.0034 (5)	0.0045 (6)
N1	0.0164 (7)	0.0214 (7)	0.0185 (7)	0.0017 (6)	0.0020 (6)	0.0008 (6)
N2	0.0166 (7)	0.0245 (8)	0.0178 (7)	0.0005 (6)	0.0022 (6)	0.0046 (6)
C1	0.0215 (9)	0.0208 (9)	0.0212 (9)	0.0025 (7)	0.0054 (7)	0.0044 (7)
C2	0.0237 (9)	0.0251 (10)	0.0217 (9)	0.0047 (7)	0.0029 (7)	0.0052 (7)
C3	0.0204 (9)	0.0199 (9)	0.0222 (9)	0.0031 (7)	0.0054 (7)	-0.0006 (7)
C4	0.0210 (9)	0.0267 (10)	0.0282 (9)	0.0022 (7)	0.0017 (7)	0.0033 (8)
C5	0.0190 (9)	0.0273 (10)	0.0362 (11)	-0.0026 (8)	0.0040 (8)	-0.0001 (8)
C6	0.0260 (9)	0.0194 (9)	0.0307 (10)	-0.0022 (7)	0.0109 (8)	0.0023 (8)
C7	0.0263 (9)	0.0209 (9)	0.0228 (9)	0.0029 (7)	0.0064 (7)	0.0029 (7)
C8	0.0202 (8)	0.0172 (8)	0.0198 (8)	0.0029 (7)	0.0075 (7)	-0.0015 (7)
C9	0.0219 (9)	0.0194 (9)	0.0185 (8)	0.0043 (7)	0.0041 (7)	0.0024 (7)
C10	0.0189 (8)	0.0190 (9)	0.0194 (8)	0.0040 (7)	0.0056 (7)	0.0000 (7)
C11	0.0183 (8)	0.0176 (9)	0.0200 (8)	0.0051 (7)	0.0064 (7)	0.0018 (7)
C12	0.0201 (8)	0.0205 (9)	0.0202 (8)	0.0022 (7)	0.0021 (7)	0.0038 (7)
C13	0.0179 (8)	0.0237 (9)	0.0201 (8)	0.0046 (7)	0.0034 (7)	0.0066 (7)
C14	0.0177 (8)	0.0184 (9)	0.0202 (8)	0.0029 (7)	0.0045 (7)	0.0060 (7)
C15	0.0184 (8)	0.0211 (9)	0.0228 (9)	0.0074 (7)	0.0057 (7)	0.0079 (7)
C16	0.0181 (8)	0.0212 (9)	0.0183 (8)	0.0029 (7)	0.0007 (7)	0.0067 (7)
C17	0.0257 (9)	0.0171 (9)	0.0189 (8)	0.0049 (7)	0.0063 (7)	0.0042 (7)
C18	0.0230 (9)	0.0266 (10)	0.0274 (9)	0.0124 (8)	0.0054 (7)	0.0064 (8)
C19	0.0183 (8)	0.0288 (10)	0.0246 (9)	0.0064 (7)	-0.0001 (7)	0.0057 (8)
C20	0.0196 (9)	0.0190 (9)	0.0255 (9)	0.0023 (7)	0.0056 (7)	0.0014 (7)
C21	0.0261 (10)	0.0289 (10)	0.0283 (9)	0.0004 (8)	0.0090 (8)	0.0086 (8)

Geometric parameters (Å, °)

Cl1—C17	1.7391 (17)	C9—C10	1.380 (2)
Cl2—C16	1.7329 (17)	С9—Н9	0.9300
O1—C20	1.228 (2)	C10—C11	1.458 (2)
N1-C11	1.292 (2)	C11—C12	1.515 (2)
N1—N2	1.3905 (18)	C12—C13	1.541 (2)
N2-C20	1.359 (2)	C12—H12A	0.9700
N2-C13	1.482 (2)	C12—H12B	0.9700
C1—C2	1.361 (2)	C13—C14	1.513 (2)
C1—C10	1.424 (2)	C13—H13	0.9800
C1—H1	0.9300	C14—C15	1.384 (2)
C2—C3	1.423 (2)	C14—C19	1.399 (2)
С2—Н2	0.9300	C15—C16	1.386 (2)
C3—C4	1.412 (2)	C15—H15	0.9300
C3—C8	1.422 (2)	C16—C17	1.390 (2)
C4—C5	1.370 (2)	C17—C18	1.389 (2)
C4—H4	0.9300	C18—C19	1.383 (2)
C5—C6	1.407 (2)	C18—H18	0.9300
С5—Н5	0.9300	C19—H19	0.9300
С6—С7	1.370 (2)	C20—C21	1.504 (2)
С6—Н6	0.9300	C21—H21A	0.9600
С7—С8	1.419 (2)	C21—H21B	0.9600
С7—Н7	0.9300	C21—H21C	0.9600
С8—С9	1.418 (2)		
C11—N1—N2	108.06(13)	C11—C12—H12A	111.2
C20—N2—N1	123.49 (13)	C13—C12—H12A	111.2
C20—N2—C13	122.90 (14)	C11—C12—H12B	111.2
N1—N2—C13	113.44 (13)	C13—C12—H12B	111.2
C2-C1-C10	120.51 (16)	H12A—C12—H12B	109.1
C2—C1—H1	119.7	N2-C13-C14	111.22 (13)
С10—С1—Н1	119.7	N2—C13—C12	101.19 (13)
C1—C2—C3	121.26 (16)	C14—C13—C12	114.05 (14)
С1—С2—Н2	119.4	N2—C13—H13	110.0
С3—С2—Н2	119.4	C14—C13—H13	110.0
C4—C3—C8	118.65 (15)	C12—C13—H13	110.0
C4—C3—C2	122.65 (16)	C15—C14—C19	119.04 (15)
C8—C3—C2	118.70 (15)	C15—C14—C13	120.14 (14)
C5—C4—C3	121.12 (17)	C19—C14—C13	120.82 (14)
С5—С4—Н4	119.4	C14—C15—C16	120.68 (15)
C3—C4—H4	119.4	C14—C15—H15	119.7
C4—C5—C6	120.44 (16)	C16—C15—H15	119.7
С4—С5—Н5	119.8	C15—C16—C17	120.00 (15)
С6—С5—Н5	119.8	C15—C16—Cl2	119.11 (12)
C7—C6—C5	119.83 (16)	C17—C16—Cl2	120.87 (13)
С7—С6—Н6	120.1	C18—C17—C16	119.75 (15)
С5—С6—Н6	120.1	C18—C17—Cl1	119.24 (13)
С6—С7—С8	121.11 (16)	C16—C17—Cl1	121.01 (13)
			(-)

supplementary materials

С6—С7—Н7	119.4	C19—C18—C17		120.04 (15)
С8—С7—Н7	119.4	C19-C18-H18		120.0
C9—C8—C7	122.30 (16)	C17—C18—H18		120.0
C9—C8—C3	118.87 (15)	C18-C19-C14		120.47 (15)
C7—C8—C3	118.82 (15)	C18-C19-H19		119.8
C10—C9—C8	121.33 (15)	C14-C19-H19		119.8
С10—С9—Н9	119.3	O1-C20-N2		119.98 (16)
С8—С9—Н9	119.3	O1—C20—C21		123.45 (15)
C9—C10—C1	119.27 (15)	N2-C20-C21		116.56 (15)
C9—C10—C11	120.09 (15)	C20-C21-H21A		109.5
C1C10C11	120.64 (15)	C20-C21-H21B		109.5
N1—C11—C10	122.02 (15)	H21A—C21—H21B		109.5
N1—C11—C12	113.82 (14)	C20-C21-H21C		109.5
C10-C11-C12	124.16 (14)	H21A—C21—H21C		109.5
C11—C12—C13	102.71 (13)	H21B-C21-H21C		109.5
C11—N1—N2—C20	171.10 (14)	C10-C11-C12-C13		-174.36 (15)
C11—N1—N2—C13	-4.34 (17)	C20—N2—C13—C14		71.20 (19)
C10—C1—C2—C3	-0.4 (2)	N1—N2—C13—C14		-113.33 (15)
C1—C2—C3—C4	178.03 (16)	C20—N2—C13—C12		-167.31 (14)
C1—C2—C3—C8	-1.9 (2)	N1—N2—C13—C12		8.16 (16)
C8—C3—C4—C5	-0.5 (3)	C11—C12—C13—N2		-8.19 (14)
C2—C3—C4—C5	179.53 (16)	C11—C12—C13—C14		111.31 (15)
C3—C4—C5—C6	-0.7 (3)	N2-C13-C14-C15		-121.67 (16)
C4—C5—C6—C7	0.6 (3)	C12—C13—C14—C15		124.67 (16)
C5—C6—C7—C8	0.7 (3)	N2-C13-C14-C19		58.3 (2)
C6—C7—C8—C9	177.62 (15)	C12—C13—C14—C19		-55.3 (2)
C6—C7—C8—C3	-1.8 (2)	C19—C14—C15—C16		1.1 (2)
C4—C3—C8—C9	-177.73 (15)	C13—C14—C15—C16		-178.91 (14)
C2—C3—C8—C9	2.2 (2)	C14—C15—C16—C17		0.0 (2)
C4—C3—C8—C7	1.8 (2)	C14—C15—C16—Cl2		-178.49 (12)
C2—C3—C8—C7	-178.31 (15)	C15—C16—C17—C18		-1.0 (2)
C7—C8—C9—C10	-179.75 (15)	Cl2—C16—C17—C18		177.50 (13)
C3—C8—C9—C10	-0.3 (2)	C15—C16—C17—Cl1		179.93 (12)
C8—C9—C10—C1	-2.0 (2)	Cl2—C16—C17—Cl1		-1.6 (2)
C8—C9—C10—C11	178.74 (14)	C16—C17—C18—C19		0.8 (2)
C2-C1-C10-C9	2.3 (2)	Cl1—C17—C18—C19		179.94 (13)
C2-C1-C10-C11	-178.40 (15)	C17—C18—C19—C14		0.3 (3)
N2-N1-C11-C10	179.26 (13)	C15—C14—C19—C18		-1.2 (2)
N2-N1-C11-C12	-1.87 (18)	C13—C14—C19—C18		178.76 (14)
C9-C10-C11-N1	174.36 (14)	N1-N2-C20-01		-177.25 (14)
C1-C10-C11-N1	-4.9 (2)	C13—N2—C20—O1		-2.2 (2)
C9—C10—C11—C12	-4.4 (2)	N1-N2-C20-C21		3.4 (2)
C1-C10-C11-C12	176.34 (14)	C13—N2—C20—C21		178.39 (14)
N1-C11-C12-C13	6.80 (17)			
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C6—H6····O1 ⁱ	0.93	2.58	3.501 (2)	171

Symmetry codes: (i) x-2, y-1, z.

